Asymptotics of conduction velocity restitution in models of electrical excitation in the heart.

نویسندگان

  • R D Simitev
  • V N Biktashev
چکیده

We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh-Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified "caricature" of Noble (J. Physiol. Lond. 160:317-352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177-210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler-Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between Activation and Repolarization Restitution Properties in the Intact Human Heart: In-Vivo Whole-Heart Data and Mathematical Description

BACKGROUND The restitution of the action potential duration (APDR) and conduction velocity (CVR) are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood. METHODS This paper provides an experimental and...

متن کامل

ar X iv : 0 90 8 . 39 23 v 1 [ q - bi o . T O ] 2 7 A ug 2 00 9 Asymptotics of conduction velocity restitution

We extend a nonstandard asymptotic method proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest nontrivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrythmias and fibrillation. An idealized conduc...

متن کامل

Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects.

We examine the utility of the action potential (AP) duration (APD) restitution curve slope in predicting the onset of electrical alternans when electrotonic and memory effects are considered. We develop and use two ionic cell models without memory that have the same restitution curve with slope >1 but different AP shapes and, therefore, different electrotonic effects. We also study a third cell...

متن کامل

Mechanism of Discordant Alternans in Spatially Homogeneous Tissue

abstract Discordant alternans, the phenomenon of separate cardiac tissue locations exhibiting action potential duration (APD) alternans of opposite phase, appears to be a potential mechanism for electrocardiographic T wave alternans, but its initiation mechanism is unknown. We studied behavior of one-and two-dimensional cardiac tissue spatially homogeneous in all respects, including APD restitu...

متن کامل

Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping.

OBJECTIVES This study was aimed at evaluating global characteristics of electrical restitution in the human ventricle using noncontact mapping. BACKGROUND Steep action potential restitution (slope >1) and conduction velocity (CV) restitution have been linked with propensity to ventricular fibrillation, but clinical measurement of global electrical restitution had not been feasible. METHODS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2011